Back to Search Start Over

Fractional Quantum Anomalous Hall Effect in a Graphene Moire Superlattice

Authors :
Lu, Zhengguang
Han, Tonghang
Yao, Yuxuan
Reddy, Aidan P.
Yang, Jixiang
Seo, Junseok
Watanabe, Kenji
Taniguchi, Takashi
Fu, Liang
Ju, Long
Publication Year :
2023

Abstract

The fractional quantum anomalous Hall effect (FQAHE), the analog of the fractional quantum Hall effect1 at zero magnetic field, is predicted to exist in topological flat bands under spontaneous time-reversal-symmetry breaking. The demonstration of FQAHE could lead to non-Abelian anyons which form the basis of topological quantum computation. So far, FQAHE has been observed only in twisted MoTe2 (t-MoTe2) at moire filling factor v > 1/2. Graphene-based moire superlattices are believed to host FQAHE with the potential advantage of superior material quality and higher electron mobility. Here we report the observation of integer and fractional QAH effects in a rhombohedral pentalayer graphene/hBN moire superlattice. At zero magnetic field, we observed plateaus of quantized Hall resistance Rxy = h/(ve^2) at filling factors v = 1, 2/3, 3/5, 4/7, 4/9, 3/7 and 2/5 of the moire superlattice respectively. These features are accompanied by clear dips in the longitudinal resistance Rxx. In addition, at zero magnetic field, Rxy equals 2h/e^2 at v = 1/2 and varies linearly with the filling factor-similar to the composite Fermi liquid (CFL) in the half-filled lowest Landau level at high magnetic fields. By tuning the gate displacement field D and v, we observed phase transitions from CFL and FQAH states to other correlated electron states. Our graphene system provides an ideal platform for exploring charge fractionalization and (non-Abelian) anyonic braiding at zero magnetic field, especially considering a lateral junction between FQAHE and superconducting regions in the same device.<br />Comment: Nature, in press

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2309.17436
Document Type :
Working Paper