Back to Search
Start Over
Unlocking the capabilities of explainable fewshot learning in remote sensing
- Publication Year :
- 2023
-
Abstract
- Recent advancements have significantly improved the efficiency and effectiveness of deep learning methods for imagebased remote sensing tasks. However, the requirement for large amounts of labeled data can limit the applicability of deep neural networks to existing remote sensing datasets. To overcome this challenge, fewshot learning has emerged as a valuable approach for enabling learning with limited data. While previous research has evaluated the effectiveness of fewshot learning methods on satellite based datasets, little attention has been paid to exploring the applications of these methods to datasets obtained from UAVs, which are increasingly used in remote sensing studies. In this review, we provide an up to date overview of both existing and newly proposed fewshot classification techniques, along with appropriate datasets that are used for both satellite based and UAV based data. Our systematic approach demonstrates that fewshot learning can effectively adapt to the broader and more diverse perspectives that UAVbased platforms can provide. We also evaluate some SOTA fewshot approaches on a UAV disaster scene classification dataset, yielding promising results. We emphasize the importance of integrating XAI techniques like attention maps and prototype analysis to increase the transparency, accountability, and trustworthiness of fewshot models for remote sensing. Key challenges and future research directions are identified, including tailored fewshot methods for UAVs, extending to unseen tasks like segmentation, and developing optimized XAI techniques suited for fewshot remote sensing problems. This review aims to provide researchers and practitioners with an improved understanding of fewshot learnings capabilities and limitations in remote sensing, while highlighting open problems to guide future progress in efficient, reliable, and interpretable fewshot methods.<br />Comment: Under review, once the paper is accepted, the copyright will be transferred to the corresponding journal
- Subjects :
- Electrical Engineering and Systems Science - Image and Video Processing
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2310.08619
- Document Type :
- Working Paper