Back to Search
Start Over
Hydrodynamic limit of multiscale viscoelastic models for rigid particle suspensions
- Publication Year :
- 2023
-
Abstract
- We study the multiscale viscoelastic Doi model for suspensions of Brownian rigid rod-like particles, as well as its generalization by Saintillan and Shelley for self-propelled particles. We consider the regime of a small Weissenberg number, which corresponds to a fast rotational diffusion compared to the fluid velocity gradient, and we analyze the resulting hydrodynamic approximation. More precisely, we show the asymptotic validity of macroscopic nonlinear viscoelastic models, in form of so-called ordered fluid models, as an expansion in the Weissenberg number. The result holds for zero Reynolds number in 3D and for arbitrary Reynolds number in 2D. Along the way, we establish several new well-posedness and regularity results for nonlinear fluid models, which may be of independent interest.<br />Comment: 64 pages
- Subjects :
- Mathematics - Analysis of PDEs
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2310.17008
- Document Type :
- Working Paper