Back to Search Start Over

CeCNN: Copula-enhanced convolutional neural networks in joint prediction of refraction error and axial length based on ultra-widefield fundus images

Authors :
Zhong, Chong
Li, Yang
Yang, Danjuan
Li, Meiyan
Zhou, Xingyao
Fu, Bo
Liu, Catherine C.
Welsh, A. H.
Publication Year :
2023

Abstract

The ultra-widefield (UWF) fundus image is an attractive 3D biomarker in AI-aided myopia screening because it provides much richer myopia-related information. Though axial length (AL) has been acknowledged to be highly related to the two key targets of myopia screening, Spherical Equivalence (SE) measurement and high myopia diagnosis, its prediction based on the UWF fundus image is rarely considered. To save the high expense and time costs of measuring SE and AL, we propose the Copula-enhanced Convolutional Neural Network (CeCNN), a one-stop UWF-based ophthalmic AI framework to jointly predict SE, AL, and myopia status. The CeCNN formulates a multiresponse regression that relates multiple dependent discrete-continuous responses and the image covariate, where the nonlinearity of the association is modeled by a backbone CNN. To thoroughly describe the dependence structure among the responses, we model and incorporate the conditional dependence among responses in a CNN through a new copula-likelihood loss. We provide statistical interpretations of the conditional dependence among responses, and reveal that such dependence is beyond the dependence explained by the image covariate. We heuristically justify that the proposed loss can enhance the estimation efficiency of the CNN weights. We apply the CeCNN to the UWF dataset collected by us and demonstrate that the CeCNN sharply enhances the predictive capability of various backbone CNNs. Our study evidences the ophthalmology view that besides SE, AL is also an important measure to myopia.

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2311.03967
Document Type :
Working Paper