Back to Search Start Over

Conservation properties of the augmented basis update & Galerkin integrator for kinetic problems

Authors :
Einkemmer, Lukas
Kusch, Jonas
Schotthöfer, Steffen
Publication Year :
2023

Abstract

Numerical simulations of kinetic problems can become prohibitively expensive due to their large memory footprint and computational costs. A method that has proven to successfully reduce these costs is the dynamical low-rank approximation (DLRA). One key question when using DLRA methods is the construction of robust time integrators that preserve the invariances and associated conservation laws of the original problem. In this work, we demonstrate that the augmented basis update & Galerkin integrator (BUG) preserves solution invariances and the associated conservation laws when using a conservative truncation step and an appropriate time and space discretization. We present numerical comparisons to existing conservative integrators and discuss advantages and disadvantages

Subjects

Subjects :
Mathematics - Numerical Analysis

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2311.06399
Document Type :
Working Paper