Back to Search Start Over

MonoDiffusion: Self-Supervised Monocular Depth Estimation Using Diffusion Model

Authors :
Shao, Shuwei
Pei, Zhongcai
Chen, Weihai
Sun, Dingchi
Chen, Peter C. Y.
Li, Zhengguo
Publication Year :
2023

Abstract

Over the past few years, self-supervised monocular depth estimation that does not depend on ground-truth during the training phase has received widespread attention. Most efforts focus on designing different types of network architectures and loss functions or handling edge cases, e.g., occlusion and dynamic objects. In this work, we introduce a novel self-supervised depth estimation framework, dubbed MonoDiffusion, by formulating it as an iterative denoising process. Because the depth ground-truth is unavailable in the training phase, we develop a pseudo ground-truth diffusion process to assist the diffusion in MonoDiffusion. The pseudo ground-truth diffusion gradually adds noise to the depth map generated by a pre-trained teacher model. Moreover,the teacher model allows applying a distillation loss to guide the denoised depth. Further, we develop a masked visual condition mechanism to enhance the denoising ability of model. Extensive experiments are conducted on the KITTI and Make3D datasets and the proposed MonoDiffusion outperforms prior state-of-the-art competitors. The source code will be available at https://github.com/ShuweiShao/MonoDiffusion.<br />Comment: 10 pages, 8 figures

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2311.07198
Document Type :
Working Paper