Back to Search Start Over

Spectral properties and observables in ultracold Fermi gases

Authors :
Dizer, Eugen
Horak, Jan
Pawlowski, Jan M.
Publication Year :
2023

Abstract

We calculate non-perturbative self-consistent fermionic and bosonic spectral functions of ultra-cold Fermi gases with the spectral functional approach. This approach allows for a direct real-time computation of non-perturbative correlation functions, and in the present work we use spectral Dyson-Schwinger equations. We focus on the normal phase of the spin-balanced Fermi gas and provide numerical results for the full fermionic and bosonic spectral functions. The spectral functions are then used for the determination of the equation of state, the Tan contact and ejection rf spectra at unitarity. These results are compared to experimental data, the self-consistent T-matrix approach and lattice results. Our approach offers a wide range of applications, including the ab initio calculation of transport and spectral properties of the superfluid phase in the BCS-BEC crossover.

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2311.16788
Document Type :
Working Paper
Full Text :
https://doi.org/10.1103/PhysRevA.109.063311