Back to Search Start Over

Enhancing the Electron Pair Approximation with Measurements on Trapped Ion Quantum Computers

Authors :
Zhao, Luning
Goings, Joshua
Wang, Qingfeng
Shin, Kyujin
Kyoung, Woomin
Noh, Seunghyo
Rhee, Young Min
Kim, Kyungmin
Publication Year :
2023

Abstract

The electron pair approximation offers a resource efficient variational quantum eigensolver (VQE) approach for quantum chemistry simulations on quantum computers. With the number of entangling gates scaling quadratically with system size and a constant energy measurement overhead, the orbital optimized unitary pair coupled cluster double (oo-upCCD) ansatz strikes a balance between accuracy and efficiency on today's quantum computers. However, the electron pair approximation makes the method incapable of producing quantitatively accurate energy predictions. In order to improve the accuracy without increasing the circuit depth, we explore the idea of reduced density matrix (RDM) based second order perturbation theory (PT2) as an energetic correction to electron pair approximation. The new approach takes into account of the broken-pair energy contribution that is missing in pair-correlated electron simulations, while maintaining the computational advantages of oo-upCCD ansatz. In dissociations of N$_2$, Li$_2$O, and chemical reactions such as the unimolecular decomposition of CH$_2$OH$^+$ and the \snTwo reaction of CH$_3$I $+$ Br$^-$, the method significantly improves the accuracy of energy prediction. On two generations of the IonQ's trapped ion quantum computers, Aria and Forte, we find that unlike the VQE energy, the PT2 energy correction is highly noise-resilient. By applying a simple error mitigation approach based on post-selection solely on the VQE energies, the predicted VQE-PT2 energy differences between reactants, transition state, and products are in excellent agreement with noise-free simulators.

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2312.05426
Document Type :
Working Paper