Back to Search Start Over

A spatial multiscale mathematical model of Plasmodium vivax transmission

Authors :
Elgart, Shoshana
Flegg, Mark B.
Mehra, Somya
Flegg, Jennifer A.
Publication Year :
2023

Abstract

The epidemiological behavior of Plasmodium vivax malaria occurs across spatial scales including within-host, population, and metapopulation levels. On the within-host scale, P. vivax sporozoites inoculated in a host may form latent hypnozoites, the activation of which drives secondary infections and accounts for a large proportion of P. vivax illness; on the metapopulation level, the coupled human-vector dynamics characteristic of the population level are further complicated by the migration of human populations across patches with different malaria forces of (re-)infection. To explore the interplay of all three scales in a single two-patch model of Plasmodium vivax dynamics, we construct and study a system of eight integro-differential equations with periodic forcing (arising from the single-frequency sinusoidal movement of a human sub-population). Under the numerically-informed ansatz that the limiting solutions to the system are closely bounded by sinusoidal ones for certain regions of parameter space, we derive a single nonlinear equation from which all approximate limiting solutions may be drawn, and devise necessary and sufficient conditions for the equation to have only a disease-free solution. Our results illustrate the impact of movement on P. vivax transmission and suggest a need to focus vector control efforts on forest mosquito populations. The three-scale model introduced here provides a more comprehensive framework for studying the clinical, behavioral, and geographical factors underlying P. vivax malaria endemicity.<br />Comment: 42 pages and 9 figures

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2312.05722
Document Type :
Working Paper