Back to Search Start Over

Edge-on Low-surface-brightness Galaxy Candidates Detected from SDSS Images Using YOLO

Authors :
Xing, Yongguang
Yi, Zhenping
Liang, Zengxu
Su, Hao
Du, Wei
He, Min
Liu, Meng
Kong, Xiaoming
Bu, Yude
Wu, Hong
Source :
The Astrophysical Journal Supplement Series, Volume 269, Issue 2, id.59, 9 pp., December 2023
Publication Year :
2023

Abstract

Low-surface-brightness galaxies (LSBGs), fainter members of the galaxy population, are thought to be numerous. However, due to their low surface brightness, the search for a wide-area sample of LSBGs is difficult, which in turn limits our ability to fully understand the formation and evolution of galaxies as well as galaxy relationships. Edge-on LSBGs, due to their unique orientation, offer an excellent opportunity to study galaxy structure and galaxy components. In this work, we utilize the You Only Look Once object detection algorithm to construct an edge-on LSBG detection model by training on 281 edge-on LSBGs in Sloan Digital Sky Survey (SDSS) $gri$-band composite images. This model achieved a recall of 94.64% and a purity of 95.38% on the test set. We searched across 938,046 $gri$-band images from SDSS Data Release 16 and found 52,293 candidate LSBGs. To enhance the purity of the candidate LSBGs and reduce contamination, we employed the Deep Support Vector Data Description algorithm to identify anomalies within the candidate samples. Ultimately, we compiled a catalog containing 40,759 edge-on LSBG candidates. This sample has similar characteristics to the training data set, mainly composed of blue edge-on LSBG candidates. The catalog is available online at https://github.com/worldoutside/Edge-on_LSBG.<br />Comment: 12 pages, 11 figures, accepted to be published on APJS

Details

Database :
arXiv
Journal :
The Astrophysical Journal Supplement Series, Volume 269, Issue 2, id.59, 9 pp., December 2023
Publication Type :
Report
Accession number :
edsarx.2312.15712
Document Type :
Working Paper
Full Text :
https://doi.org/10.3847/1538-4365/ad0551