Back to Search Start Over

Sharp bounds for higher Steklov-Dirichlet eigenvalues on domains with spherical holes

Authors :
Basak, Sagar
Chorwadwala, Anisa
Verma, Sheela
Publication Year :
2023

Abstract

We consider mixed Steklov-Dirichlet eigenvalue problem on smooth bounded domains in Riemannian manifolds. Under certain symmetry assumptions on multiconnected domains in $\mathbb{R}^{n}$ with a spherical hole, we obtain isoperimetric inequalities for $k$-th Steklov-Dirichlet eigenvalues for $2 \leq k \leq n+1$. We extend Theorem 3.1 of \cite{gavitone2023isoperimetric} from Euclidean domains to domains in space forms, that is, we obtain sharp lower and upper bounds of the first Steklov-Dirichlet eigenvalue on bounded star-shaped domains in the unit $n$-sphere and in the hyperbolic space.

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2312.16889
Document Type :
Working Paper