Back to Search
Start Over
Sharp bounds for higher Steklov-Dirichlet eigenvalues on domains with spherical holes
- Publication Year :
- 2023
-
Abstract
- We consider mixed Steklov-Dirichlet eigenvalue problem on smooth bounded domains in Riemannian manifolds. Under certain symmetry assumptions on multiconnected domains in $\mathbb{R}^{n}$ with a spherical hole, we obtain isoperimetric inequalities for $k$-th Steklov-Dirichlet eigenvalues for $2 \leq k \leq n+1$. We extend Theorem 3.1 of \cite{gavitone2023isoperimetric} from Euclidean domains to domains in space forms, that is, we obtain sharp lower and upper bounds of the first Steklov-Dirichlet eigenvalue on bounded star-shaped domains in the unit $n$-sphere and in the hyperbolic space.
- Subjects :
- Mathematics - Spectral Theory
Mathematics - Analysis of PDEs
58J50, 35P15
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2312.16889
- Document Type :
- Working Paper