Back to Search Start Over

A foundation model for atomistic materials chemistry

Authors :
Batatia, Ilyes
Benner, Philipp
Chiang, Yuan
Elena, Alin M.
Kovács, Dávid P.
Riebesell, Janosh
Advincula, Xavier R.
Asta, Mark
Avaylon, Matthew
Baldwin, William J.
Berger, Fabian
Bernstein, Noam
Bhowmik, Arghya
Blau, Samuel M.
Cărare, Vlad
Darby, James P.
De, Sandip
Della Pia, Flaviano
Deringer, Volker L.
Elijošius, Rokas
El-Machachi, Zakariya
Falcioni, Fabio
Fako, Edvin
Ferrari, Andrea C.
Genreith-Schriever, Annalena
George, Janine
Goodall, Rhys E. A.
Grey, Clare P.
Grigorev, Petr
Han, Shuang
Handley, Will
Heenen, Hendrik H.
Hermansson, Kersti
Holm, Christian
Jaafar, Jad
Hofmann, Stephan
Jakob, Konstantin S.
Jung, Hyunwook
Kapil, Venkat
Kaplan, Aaron D.
Karimitari, Nima
Kermode, James R.
Kroupa, Namu
Kullgren, Jolla
Kuner, Matthew C.
Kuryla, Domantas
Liepuoniute, Guoda
Margraf, Johannes T.
Magdău, Ioan-Bogdan
Michaelides, Angelos
Moore, J. Harry
Naik, Aakash A.
Niblett, Samuel P.
Norwood, Sam Walton
O'Neill, Niamh
Ortner, Christoph
Persson, Kristin A.
Reuter, Karsten
Rosen, Andrew S.
Schaaf, Lars L.
Schran, Christoph
Shi, Benjamin X.
Sivonxay, Eric
Stenczel, Tamás K.
Svahn, Viktor
Sutton, Christopher
Swinburne, Thomas D.
Tilly, Jules
van der Oord, Cas
Varga-Umbrich, Eszter
Vegge, Tejs
Vondrák, Martin
Wang, Yangshuai
Witt, William C.
Zills, Fabian
Csányi, Gábor
Publication Year :
2023

Abstract

Machine-learned force fields have transformed the atomistic modelling of materials by enabling simulations of ab initio quality on unprecedented time and length scales. However, they are currently limited by: (i) the significant computational and human effort that must go into development and validation of potentials for each particular system of interest; and (ii) a general lack of transferability from one chemical system to the next. Here, using the state-of-the-art MACE architecture we introduce a single general-purpose ML model, trained on a public database of 150k inorganic crystals, that is capable of running stable molecular dynamics on molecules and materials. We demonstrate the power of the MACE-MP-0 model - and its qualitative and at times quantitative accuracy - on a diverse set problems in the physical sciences, including the properties of solids, liquids, gases, chemical reactions, interfaces and even the dynamics of a small protein. The model can be applied out of the box and as a starting or "foundation model" for any atomistic system of interest and is thus a step towards democratising the revolution of ML force fields by lowering the barriers to entry.<br />Comment: 119 pages, 63 figures, 37MB PDF

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2401.00096
Document Type :
Working Paper