Back to Search Start Over

SPT Clusters with DES and HST Weak Lensing. II. Cosmological Constraints from the Abundance of Massive Halos

Authors :
Bocquet, S.
Grandis, S.
Bleem, L. E.
Klein, M.
Mohr, J. J.
Schrabback, T.
Abbott, T. M. C.
Ade, P. A. R.
Aguena, M.
Alarcon, A.
Allam, S.
Allen, S. W.
Alves, O.
Amon, A.
Anderson, A. J.
Annis, J.
Ansarinejad, B.
Austermann, J. E.
Avila, S.
Bacon, D.
Bayliss, M.
Beall, J. A.
Bechtol, K.
Becker, M. R.
Bender, A. N.
Benson, B. A.
Bernstein, G. M.
Bhargava, S.
Bianchini, F.
Brodwin, M.
Brooks, D.
Bryant, L.
Campos, A.
Canning, R. E. A.
Carlstrom, J. E.
Rosell, A. Carnero
Kind, M. Carrasco
Carretero, J.
Castander, F. J.
Cawthon, R.
Chang, C. L.
Chang, C.
Chaubal, P.
Chen, R.
Chiang, H. C.
Choi, A.
Chou, T-L.
Citron, R.
Moran, C. Corbett
Cordero, J.
Costanzi, M.
Crawford, T. M.
Crites, A. T.
da Costa, L. N.
Pereira, M. E. S.
Davis, C.
Davis, T. M.
DeRose, J.
Desai, S.
de Haan, T.
Diehl, H. T.
Dobbs, M. A.
Dodelson, S.
Doux, C.
Drlica-Wagner, A.
Eckert, K.
Elvin-Poole, J.
Everett, S.
Everett, W.
Ferrero, I.
Ferté, A.
Flores, A. M.
Frieman, J.
Gallicchio, J.
García-Bellido, J.
Gatti, M.
George, E. M.
Giannini, G.
Gladders, M. D.
Gruen, D.
Gruendl, R. A.
Gupta, N.
Gutierrez, G.
Halverson, N. W.
Harrison, I.
Hartley, W. G.
Herner, K.
Hinton, S. R.
Holder, G. P.
Hollowood, D. L.
Holzapfel, W. L.
Honscheid, K.
Hrubes, J. D.
Huang, N.
Hubmayr, J.
Huff, E. M.
Huterer, D.
Irwin, K. D.
James, D. J.
Jarvis, M.
Khullar, G.
Kim, K.
Knox, L.
Kraft, R.
Krause, E.
Kuehn, K.
Kuropatkin, N.
Kéruzoré, F.
Lahav, O.
Lee, A. T.
Leget, P. -F.
Li, D.
Lin, H.
Lowitz, A.
MacCrann, N.
Mahler, G.
Mantz, A.
Marshall, J. L.
McCullough, J.
McDonald, M.
McMahon, J. J.
Mena-Fernández, J.
Menanteau, F.
Meyer, S. S.
Miquel, R.
Montgomery, J.
Myles, J.
Natoli, T.
Navarro-Alsina, A.
Nibarger, J. P.
Noble, G. I.
Novosad, V.
Ogando, R. L. C.
Omori, Y.
Padin, S.
Pandey, S.
Paschos, P.
Patil, S.
Pieres, A.
Malagón, A. A. Plazas
Porredon, A.
Prat, J.
Pryke, C.
Raveri, M.
Reichardt, C. L.
Roberson, J.
Rollins, R. P.
Romero, C.
Roodman, A.
Ruhl, J. E.
Rykoff, E. S.
Saliwanchik, B. R.
Salvati, L.
Sánchez, C.
Sanchez, E.
Cid, D. Sanchez
Saro, A.
Schaffer, K. K.
Secco, L. F.
Sevilla-Noarbe, I.
Sharon, K.
Sheldon, E.
Shin, T.
Sievers, C.
Smecher, G.
Smith, M.
Somboonpanyakul, T.
Sommer, M.
Stalder, B.
Stark, A. A.
Stephen, J.
Strazzullo, V.
Suchyta, E.
Tarle, G.
To, C.
Troxel, M. A.
Tucker, C.
Tutusaus, I.
Varga, T. N.
Veach, T.
Vieira, J. D.
Vikhlinin, A.
von der Linden, A.
Wang, G.
Weaverdyck, N.
Weller, J.
Whitehorn, N.
Wu, W. L. K.
Yanny, B.
Yefremenko, V.
Yin, B.
Young, M.
Zebrowski, J. A.
Zhang, Y.
Zohren, H.
Zuntz, J.
Publication Year :
2024

Abstract

We present cosmological constraints from the abundance of galaxy clusters selected via the thermal Sunyaev-Zel'dovich (SZ) effect in South Pole Telescope (SPT) data with a simultaneous mass calibration using weak gravitational lensing data from the Dark Energy Survey (DES) and the Hubble Space Telescope (HST). The cluster sample is constructed from the combined SPT-SZ, SPTpol ECS, and SPTpol 500d surveys, and comprises 1,005 confirmed clusters in the redshift range $0.25-1.78$ over a total sky area of 5,200 deg$^2$. We use DES Year 3 weak-lensing data for 688 clusters with redshifts $z<0.95$ and HST weak-lensing data for 39 clusters with $0.6<z<1.7$. The weak-lensing measurements enable robust mass measurements of sample clusters and allow us to empirically constrain the SZ observable--mass relation. For a flat $\Lambda$CDM cosmology, and marginalizing over the sum of massive neutrinos, we measure $\Omega_\mathrm{m}=0.286\pm0.032$, $\sigma_8=0.817\pm0.026$, and the parameter combination $\sigma_8\,(\Omega_\mathrm{m}/0.3)^{0.25}=0.805\pm0.016$. Our measurement of $S_8\equiv\sigma_8\,\sqrt{\Omega_\mathrm{m}/0.3}=0.795\pm0.029$ and the constraint from Planck CMB anisotropies (2018 TT,TE,EE+lowE) differ by $1.1\sigma$. In combination with that Planck dataset, we place a 95% upper limit on the sum of neutrino masses $\sum m_\nu<0.18$ eV. When additionally allowing the dark energy equation of state parameter $w$ to vary, we obtain $w=-1.45\pm0.31$ from our cluster-based analysis. In combination with Planck data, we measure $w=-1.34^{+0.22}_{-0.15}$, or a $2.2\sigma$ difference with a cosmological constant. We use the cluster abundance to measure $\sigma_8$ in five redshift bins between 0.25 and 1.8, and we find the results to be consistent with structure growth as predicted by the $\Lambda$CDM model fit to Planck primary CMB data.<br />Comment: Accepted for publication in Phys. Rev. D. arXiv v2 corresponds to published article

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2401.02075
Document Type :
Working Paper