Back to Search Start Over

Cu$_2$ZnSiTe$_4$: A potential thermoelectric material with promising electronic transport

Authors :
Sharma, Himanshu
Sahni, Bhawna
Saha-Dasgupta, Tanusri
Alam, Aftab
Publication Year :
2024

Abstract

Transition metal-based quaternary chalcogenides have gathered immense attention for various renewable energy applications including thermoelectrics (TE). While low-symmetry and complex structure help to achieve low thermal conductivity, the TE power factor and hence the figure of merit (ZT) remains low which hinders to promote these class of materials for future TE applications. Here, we investigated the TE properties of a new system, Cu$_2$ZnSiTe$_4$, with improved electronic transport using first-principles calculation. The presence of heavy chalcogen like Te, helps to achieve a relatively low bandgap (0.58 eV). This, together with unique electronic band topology, leads to a promising value of power-factor of 3.95(n-type) and 3.06(p-type) mWm$^{-1}$K$^{-2}$ at 900 K. Te atoms also play a crucial role in mixing the optical and acoustic phonon branches which, in turn, are responsible for reduced lattice thermal conductivity ($\sim$0.7 Wm$^{-1}$K$^{-1}$ at high temperature). Though the thermal conductivity is not appreciably low, the electronic transport properties (power factor) are quite favorable to yield promising TE figure of merit (ZT $\sim$2.67 (n-type) and $\sim$2.11 (p-type) at 900 K). We propose Cu$_2$ZnSiTe$_4$ to be a potential candidate for TE applications, and believe to attract future experimental/theoretical studies.

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2401.05903
Document Type :
Working Paper