Back to Search Start Over

Fourth-order operators with unbounded coefficients

Authors :
Gregorio, Federica
Spina, Chiara
Tacelli, Cristian
Source :
Communications on Pure and Applied Analysis. 2024
Publication Year :
2024

Abstract

We prove that operators of the form $A=-a(x)^2\Delta^{2}$, with $|D a(x)|\leq c a(x)^\frac{1}{2}$, generate analytic semigroups in $L^p(\mathbb{R}^N)$ for $1<p\leq\infty$ and in $C_b(\mathbb{R}^N)$. In particular, we deduce generation results for the operator $A :=- (1+|x|^2)^{\alpha} \Delta^{2}$, $0\leq\alpha\leq2$. Moreover, we characterize the maximal domain of such operators in $L^p(\mathbb{R}^N)$ for $1<p<\infty$.

Subjects

Subjects :
Mathematics - Analysis of PDEs

Details

Database :
arXiv
Journal :
Communications on Pure and Applied Analysis. 2024
Publication Type :
Report
Accession number :
edsarx.2401.14187
Document Type :
Working Paper
Full Text :
https://doi.org/10.3934/cpaa.2024020