Back to Search
Start Over
Fourth-order operators with unbounded coefficients
- Source :
- Communications on Pure and Applied Analysis. 2024
- Publication Year :
- 2024
-
Abstract
- We prove that operators of the form $A=-a(x)^2\Delta^{2}$, with $|D a(x)|\leq c a(x)^\frac{1}{2}$, generate analytic semigroups in $L^p(\mathbb{R}^N)$ for $1<p\leq\infty$ and in $C_b(\mathbb{R}^N)$. In particular, we deduce generation results for the operator $A :=- (1+|x|^2)^{\alpha} \Delta^{2}$, $0\leq\alpha\leq2$. Moreover, we characterize the maximal domain of such operators in $L^p(\mathbb{R}^N)$ for $1<p<\infty$.
- Subjects :
- Mathematics - Analysis of PDEs
Subjects
Details
- Database :
- arXiv
- Journal :
- Communications on Pure and Applied Analysis. 2024
- Publication Type :
- Report
- Accession number :
- edsarx.2401.14187
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.3934/cpaa.2024020