Back to Search Start Over

Ground-state mass of $^{22}$Al and test of state-of-the-art \textit{ab initio} calculations

Authors :
Sun, M. Z.
Yu, Y.
Wang, X. P.
Wang, M.
Li, J. G.
Zhang, Y. H.
Blaum, K.
Chen, Z. Y.
Chen, R. J.
Deng, H. Y.
Fu, C. Y.
Ge, W. W.
Huang, W. J.
Jiao, H. Y.
Li, H. H.
Li, H. F.
Luo, Y. F.
Liao, T.
Litvinov, Yu. A.
Si, M.
Shuai, P.
Shi, J. Y.
Wang, Q.
Xing, Y. M.
Xu, X.
Xu, H. S.
Xu, F. R.
Yuan, Q.
Yamaguchi, T.
Yan, X. L.
Yang, J. C.
Yuan, Y. J.
Zhou, X. H.
Zhou, X.
Zhang, M.
Zeng, Q.
Publication Year :
2024

Abstract

The ground-state mass excess of the $T_{z}=-2$ drip-line nucleus $^{22}$Al is measured for the first time to be $18103(10)$ keV using the newly-developed B$\rho$-defined isochronous mass spectrometry method at the cooler storage ring in Lanzhou. The new mass excess value allowed us to determine the excitation energies of the two low-lying $1^+$ states in $^{22}$Al with significantly reduced uncertainties of 51 keV. Comparing to the analogue states in its mirror nucleus $^{22}$F, the mirror energy differences of the two $1^+$ states in the $^{22}$Al-$^{22}$F mirror pair are determined to be $-625(51)$ keV and $-330(51)$ keV, respectively. The excitation energies and the mirror energy differences are used to test the state-of-the-art \textit{ab initio} valence-space in-medium similarity renormalization group calculations with four sets of interactions derived from the chiral effective field theory. The mechanism leading to the large mirror energy differences is investigated and attributed to the occupation of the $\pi s_{1/2}$ orbital.<br />Comment: 8 pages, 5 figures

Subjects

Subjects :
Nuclear Experiment

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2401.14704
Document Type :
Working Paper