Back to Search
Start Over
Spreading and engulfment of a viscoelastic film onto a Newtonian droplet
- Publication Year :
- 2024
-
Abstract
- We use the conservative phase-field lattice Boltzmann method to investigate the dynamics when a Newtonian droplet comes in contact with an immiscible viscoelastic liquid film. The dynamics of the three liquid phases are explored through numerical simulations, with a focus on illustrating the contact line dynamics and the viscoelastic effects described by the Oldroyd-B model. The droplet dynamics are contrasted with the case of a Newtonian fluid film. The simulations demonstrate that when the film is viscoelastic, the droplet dynamics become insensitive to the film thickness when the polymer viscosity and relaxation time are large. A viscoelastic ridge forms at the moving contact line, which evolves with a power-law dependence on time. By rescaling the interface profile of the ridge using its height and width, it appears to collapse onto a similar shape. Our findings reveal a strong correlation between the viscoelastic stress and the interface shape near the contact line.
- Subjects :
- Physics - Fluid Dynamics
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2401.17762
- Document Type :
- Working Paper