Back to Search Start Over

Detecting Respiratory Pathologies Using Convolutional Neural Networks and Variational Autoencoders for Unbalancing Data

Authors :
García-Ordás, María Teresa
Benítez-Andrades, José Alberto
García-Rodríguez, Isaías
Benavides, Carmen
Alaiz-Moretón, Héctor
Source :
Sensors 2020, Volume 20 Issue 4, ID 1214
Publication Year :
2024

Abstract

The aim of this paper was the detection of pathologies through respiratory sounds. The ICBHI (International Conference on Biomedical and Health Informatics) Benchmark was used. This dataset is composed of 920 sounds of which 810 are of chronic diseases, 75 of non-chronic diseases and only 35 of healthy individuals. As more than 88% of the samples of the dataset are from the same class (Chronic), the use of a Variational Convolutional Autoencoder was proposed to generate new labeled data and other well known oversampling techniques after determining that the dataset classes are unbalanced. Once the preprocessing step was carried out, a Convolutional Neural Network (CNN) was used to classify the respiratory sounds into healthy, chronic, and non-chronic disease. In addition, we carried out a more challenging classification trying to distinguish between the different types of pathologies or healthy: URTI, COPD, Bronchiectasis, Pneumonia, and Bronchiolitis. We achieved results up to 0.993 F-Score in the three-label classification and 0.990 F-Score in the more challenging six-class classification.

Details

Database :
arXiv
Journal :
Sensors 2020, Volume 20 Issue 4, ID 1214
Publication Type :
Report
Accession number :
edsarx.2402.02183
Document Type :
Working Paper
Full Text :
https://doi.org/10.3390/s20041214