Back to Search
Start Over
Probing $Ca_3Ti_2O_7$ crystal structure at the atomic level: Insights from $^{111m}Cd/^{111}Cd$ PAC spectroscopy and ab-initio studies
- Publication Year :
- 2024
-
Abstract
- Perturbed angular correlation spectroscopy combined with $ab-initio$ electronic structure calculations is used to unravel the structural phase transition path from the low-temperature polar structure to the high-temperature structural phase in $Ca_3Ti_2O_7$, a hybrid improper ferroelectric. This procedure explores the unique features of a local probe environment approach by monitoring the evolution of the electric field gradient tensor at the calcium sites. The local environments, observed above 1057 K, confirm a structural phase transition from the $A2_1am$ symmetry to an orthorhombic $Acaa$ symmetry in the $Ca_3Ti_2O_7$ crystal lattice, disagreeing with the frequently reported avalanche structural transition from the polar $A2_1am$ phase to the aristotype $I4/mmm$ phase. Moreover, the EFG temperature dependency, within the $A2_1am$ temperature stability, is shown to be sensitive to the recently proposed $Ca_3Ti_2O_7$ ferroelectric polarization decrease within the 500-800~K temperature range.
- Subjects :
- Condensed Matter - Materials Science
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2402.09945
- Document Type :
- Working Paper