Back to Search
Start Over
Tailoring Polarization in WSe$_2$ Quantum Emitters through Deterministic Strain Engineering
- Publication Year :
- 2024
-
Abstract
- Quantum emitters in transition metal dichalcogenides (TMDs) have recently emerged as a promising platform for generating single photons for optical quantum information processing. In this work, we present an approach for deterministically controlling the polarization of fabricated quantum emitters in a tungsten diselenide (WSe$_2$) monolayer. We employ novel nanopillar geometries with long and sharp tips to induce a controlled directional strain in the monolayer, and we report on fabricated WSe$_2$ emitters producing single photons with a high degree of polarization $(99\pm 4 \%)$ and high purity ($g^{(2)}(0) = 0.030 \pm 0.025$). Our work paves the way for the deterministic integration of TMD-based quantum emitters for future photonic quantum technologies.
- Subjects :
- Physics - Optics
Quantum Physics
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2402.11075
- Document Type :
- Working Paper