Back to Search Start Over

Piezoelectricity and flexoelectricity in biological cells: The role of cell structure and organelles

Authors :
Venkateshwarlu, Akepogu
Akshayveer
Singh, Sundeep
Melnik, Roderick
Publication Year :
2024

Abstract

Living tissues experience various external forces on cells, influencing their behaviour, physiology, shape, gene expression, and destiny through interactions with their environment. Despite much research done in this area, challenges remain in our better understanding of the behaviour of the cell in response to external stimuli, including the arrangement, quantity, and shape of organelles within the cell. This study explores the electromechanical behaviour of biological cells, including organelles like microtubules, mitochondria, nuclei, and cell membranes. Two distinct cell structures have been developed to explore the cell responses to mechanical displacement, resembling actual cell shapes. The finite element method has been utilized to integrate the linear piezoelectric and non-local flexoelectric effects accurately. It is found that the longitudinal stress is absent and only the transverse stress plays a crucial role when the mechanical load is imposed on the top side of the cell through compressive displacement. The impact of flexoelectricity is elucidated by introducing a new parameter called the maximum electric potential ratio ($V_{\text{R,max}}$). It has been found that $V_{\text{R,max}}$ depends upon the orientation angle and shape of the microtubules. Further, the study reveals that the number of microtubules significantly impacts effective elastic and piezoelectric coefficients, affecting cell behaviour based on structure, microtubule orientation, and mechanical stress direction. The insight obtained from the current study can assist in advancements in medical therapies such as tissue engineering and regenerative medicine.

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2403.02050
Document Type :
Working Paper