Back to Search Start Over

Case studies on time-dependent Ginzburg-Landau simulations for superconducting applications

Authors :
Xue, Cun
Wang, Qing-Yu
Ren, Han-Xi
He, An
Silhanek, A. V.
Publication Year :
2024

Abstract

The macroscopic electromagnetic properties of type II superconductors are primarily influenced by the behavior of microscopic superconducting flux quantum units. Time-dependent Ginzburg-Landau (TDGL) equations provide an elegant and powerful tool for describing and examining both the statics and dynamics of these superconducting entities. They have been instrumental in replicating and elucidating numerous experimental results over the past decades.This paper provides a comprehensive overview of the progress in TDGL simulations, focusing on three key aspects of superconductor applications. The initial section delves into vortex rectification in superconductors described within the TDGL framework. We specifically highlight the superconducting diode effect achieved through asymmetric pinning landscapes and the reversible manipulation of vortex ratchets with dynamic pinning landscapes. The subsequent section reviews the achievements of TDGL simulations concerning the critical current density of superconductors, emphasizing the optimization of pinning sites, particularly vortex pinning and dynamics in polycrystalline Nb$_3$Sn with grain boundaries. The third part concentrates on numerical modeling of vortex penetration and dynamics in superconducting radio frequency (SRF) cavities, including a discussion of superconductor insulator superconductor multilayer structures. In the last section, we present key findings, insights, and perspectives derived from the discussed simulations.<br />Comment: 20 pages,13 figures

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2403.03729
Document Type :
Working Paper