Back to Search
Start Over
Generalized Gottschalk's conjecture for sofic groups and applications
- Publication Year :
- 2024
-
Abstract
- We establish generalizations of the well-known surjunctivity theorem of Gromov and Weiss as well as the dual-surjunctivity theorem of Capobianco, Kari and Taati for cellular automata (CA) to local perturbations of CA over sofic group universes. We also extend the results to a class of non-uniform cellular automata (NUCA) consisting of global perturbations with uniformly bounded singularity of CA. As an application, we obtain the surjunctivity of algebraic NUCA with uniformly bounded singularity over sofic groups. Moreover, we prove the stable finiteness of twisted group rings over sofic groups to generalize known results on Kaplansky's stable finiteness conjecture for group rings.
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2403.05998
- Document Type :
- Working Paper