Back to Search Start Over

Directional testing for one-way MANOVA in divergent dimensions

Authors :
Huang, Caizhu
Di Caterina, Claudia
Sartori, Nicola
Publication Year :
2024

Abstract

Testing the equality of mean vectors across $g$ different groups plays an important role in many scientific fields. In regular frameworks, likelihood-based statistics under the normality assumption offer a general solution to this task. However, the accuracy of standard asymptotic results is not reliable when the dimension $p$ of the data is large relative to the sample size $n_i$ of each group. We propose here an exact directional test for the equality of $g$ normal mean vectors with identical unknown covariance matrix, provided that $\sum_{i=1}^g n_i \ge p+g+1$. In the case of two groups ($g=2$), the directional test is equivalent to the Hotelling's $T^2$ test. In the more general situation where the $g$ independent groups may have different unknown covariance matrices, although exactness does not hold, simulation studies show that the directional test is more accurate than most commonly used likelihood based solutions. Robustness of the directional approach and its competitors under deviation from multivariate normality is also numerically investigated.<br />Comment: 51 pages, 15 figures

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2403.07679
Document Type :
Working Paper