Back to Search Start Over

iSpLib: A Library for Accelerating Graph Neural Networks using Auto-tuned Sparse Operations

Authors :
Anik, Md Saidul Hoque
Badhe, Pranav
Gampa, Rohit
Azad, Ariful
Publication Year :
2024

Abstract

Core computations in Graph Neural Network (GNN) training and inference are often mapped to sparse matrix operations such as sparse-dense matrix multiplication (SpMM). These sparse operations are harder to optimize by manual tuning because their performance depends significantly on the sparsity of input graphs, GNN models, and computing platforms. To address this challenge, we present iSpLib, a PyTorch-based C++ library equipped with auto-tuned sparse operations. iSpLib expedites GNN training with a cache-enabled backpropagation that stores intermediate matrices in local caches. The library offers a user-friendly Python plug-in that allows users to take advantage of our optimized PyTorch operations out-of-the-box for any existing linear algebra-based PyTorch implementation of popular GNNs (Graph Convolution Network, GraphSAGE, Graph Inference Network, etc.) with only two lines of additional code. We demonstrate that iSpLib obtains up to 27x overall training speedup compared to the equivalent PyTorch 2.1.0 and PyTorch Geometric 2.4.0 implementations on the CPU. Our library is publicly available at https://github.com/HipGraph/iSpLib (https://doi.org/10.5281/zenodo.10806511).

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2403.14853
Document Type :
Working Paper