Back to Search Start Over

On tight $(k,\ell)$-stable graphs

Authors :
Liu, Xiaonan
Song, Zi-Xia
Wang, Zhiyu
Publication Year :
2024

Abstract

For integers $k>\ell\ge0$, a graph $G$ is $(k,\ell)$-stable if $\alpha(G-S)\geq \alpha(G)-\ell$ for every $S\subseteq V(G)$ with $|S|=k$. A recent result of Dong and Wu [SIAM J. Discrete Math., 36 (2022) 229--240] shows that every $(k,\ell)$-stable graph $G$ satisfies $\alpha(G) \le \lfloor ({|V(G)|-k+1})/{2}\rfloor+\ell$. A $(k,\ell)$-stable graph $G$ is tight if $\alpha(G) = \lfloor ({|V(G)|-k+1})/{2}\rfloor+\ell$; and $q$-tight for some integer $q\ge0$ if $\alpha(G) = \lfloor ({|V(G)|-k+1})/{2}\rfloor+\ell-q$. In this paper, we first prove that for all $k\geq 24$, the only tight $(k, 0)$-stable graphs are $K_{k+1}$ and $K_{k+2}$, answering a question of Dong and Luo [arXiv: 2401.16639]. We then prove that for all nonnegative integers $k, \ell, q$ with $k\geq 3\ell+3$, every $q$-tight $(k,\ell)$-stable graph has at most $k-3\ell-3+2^{3(\ell+2q+4)^2}$ vertices, answering a question of Dong and Luo in the negative.<br />Comment: 11 pages

Subjects

Subjects :
Mathematics - Combinatorics
05C69

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2404.01639
Document Type :
Working Paper