Back to Search
Start Over
The GAPS Programme at TNG. XXX: Characterization of the low-density gas giant HAT-P-67 b with GIARPS
- Source :
- A&A 687, A143 (2024)
- Publication Year :
- 2024
-
Abstract
- HAT-P-67 b is one of the lowest-density gas giants known to date, making it an excellent target for atmospheric characterization through the transmission spectroscopy technique. In the framework of the GAPS large programme, we collected four transit events, with the aim of studying the exoplanet atmosphere and deriving the orbital projected obliquity. We exploited the high-precision GIARPS observing mode of the TNG, along with additional archival TESS photometry, to explore the activity level of the host star. We performed transmission spectroscopy, both in the VIS and in the nIR wavelength range, and analysed the RML effect both fitting the RVs and the Doppler shadow. Based on the TESS photometry, we redetermined the transit parameters of HAT-P-67 b. By modelling the RML effect, we derived a sky-projected obliquity of ($2.2\pm0.4$){\deg} indicating an aligned planetary orbit. The chromospheric activity index $\log\,R^{\prime}_{\rm HK}$, the CCF profile, and the variability in the transmission spectrum of the H$\alpha$ line suggest that the host star shows signatures of stellar activity and/or pulsations. We found no evidence of atomic or molecular species in the VIS transmission spectra, with the exception of pseudo-signals corresponding to Cr I, Fe I, H$\alpha$, Na I, and Ti I. In the nIR range, we found an absorption signal of the He I triplet of 5.56$^{+0.29}_{-0.30}$%(19.0$\sigma$), corresponding to an effective planetary radius of $\sim$3$R_p$ (where $R_p\sim$2$R_J$) which extends beyond the planet's Roche Lobe radius. Owing to the stellar variability, together with the high uncertainty of the model, we could not confirm the planetary origin of the signals found in the optical transmission spectrum. On the other hand, we confirmed previous detections of the infrared He I triplet, providing a 19.0$\sigma$ detection. Our finding indicates that the planet's atmosphere is evaporating.<br />Comment: Accepted for publication in A&A
- Subjects :
- Astrophysics - Earth and Planetary Astrophysics
Subjects
Details
- Database :
- arXiv
- Journal :
- A&A 687, A143 (2024)
- Publication Type :
- Report
- Accession number :
- edsarx.2404.03317
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1051/0004-6361/202349116