Back to Search Start Over

Spin-lattice relaxation with non-linear couplings: Comparison between Fermi's golden rule and extended dissipaton equation of motion

Authors :
Bi, Rui-Hao
Su, Yu
Wang, Yao
Sun, Lei
Dou, Wenjie
Publication Year :
2024

Abstract

Fermi's golden rule (FGR) offers an empirical framework for understanding the dynamics of spin-lattice relaxation in magnetic molecules, encompassing mechanisms like direct (one-phonon) and Raman (two-phonon) processes. These principles effectively model experimental longitudinal relaxation rates, denoted as $T_1^{-1}$. However, under scenarios of increased coupling strength and nonlinear spin-lattice interactions, FGR's applicability may diminish. This paper numerically evaluates the exact spin-lattice relaxation rate kernels, employing the extended dissipaton equation of motion (DEOM) formalism. Our calculations reveal that when quadratic spin-lattice coupling is considered, the rate kernels exhibit a free induction decay-like feature, and the damping rates depend on the interaction strength. We observe that the temperature dependence predicted by FGR significantly deviates from the exact results since FGR ignores the non-Markovian nature of spin-lattice relaxation. Our methods can be readily applied to other systems with nonlinear spin-lattice interactions and provide valuable insights into the temperature dependence of $T_1$ in molecular qubits.<br />Comment: 10 pages, 5 figures

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2404.04803
Document Type :
Working Paper
Full Text :
https://doi.org/10.1063/5.0212870