Back to Search Start Over

Holographic Integrated Data and Energy Transfer

Authors :
Huang, Qingxiao
Hu, Jie
Zhao, Yizhe
Yang, Kun
Publication Year :
2024

Abstract

Thanks to the application of metamaterials, holographic multiple-input multiple-output (H-MIMO) is expected to achieve a higher spatial diversity gain by enabling the ability to generate any current distribution on the surface. With the aid of electromagnetic (EM) manipulation capability of H-MIMO, integrated data and energy transfer (IDET) system can fully exploits the EM channel to realize energy focusing and eliminate inter-user interference, which yields the concept of holographic IDET (H-IDET). In this paper, we invetigate the beamforming designs for H-IDET systems, where the sum-rate of data users (DUs) are maximized by guaranteeing the energy harvesting requirements of energy users (EUs). In order to solve the non-convex functional programming, a block coordinate descent (BCD) based scheme is proposed, wherein the Fourier transform and the equivalence between the signal-to-interference-plus-noise ratio (SINR) and the mean-square error (MSE) are also conceived, followed by the successive convex approximation (SCA) and an initialization scheme to enhance robustness. Numerical results illustrate that our proposed H-IDET scheme outperforms benchmark schemes, especially the one adopting traditional discrete antennas. Besides, the near-field focusing using EM channel model achieves better performance compared to that using the traditional channel model, especially for WPT where the EUs are usually close to the transmitter.

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2404.04927
Document Type :
Working Paper