Back to Search Start Over

A New Statistic for Testing Covariance Equality in High-Dimensional Gaussian Low-Rank Models

Authors :
Beisson, Rémi
Vallet, Pascal
Giremus, Audrey
Ginolhac, Guillaume
Publication Year :
2024

Abstract

In this paper, we consider the problem of testing equality of the covariance matrices of L complex Gaussian multivariate time series of dimension $M$ . We study the special case where each of the L covariance matrices is modeled as a rank K perturbation of the identity matrix, corresponding to a signal plus noise model. A new test statistic based on the estimates of the eigenvalues of the different covariance matrices is proposed. In particular, we show that this statistic is consistent and with controlled type I error in the high-dimensional asymptotic regime where the sample sizes $N_1,\ldots,N_L$ of each time series and the dimension $M$ both converge to infinity at the same rate, while $K$ and $L$ are kept fixed. We also provide some simulations on synthetic and real data (SAR images) which demonstrate significant improvements over some classical methods such as the GLRT, or other alternative methods relevant for the high-dimensional regime and the low-rank model.<br />Comment: 16 pages, preprint of the version that will appear in IEEE Transactions on Signal Processing, 2024

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2404.07100
Document Type :
Working Paper
Full Text :
https://doi.org/10.1109/TSP.2024.3382476