Back to Search
Start Over
Study of bottom quark dynamics via non-prompt $D^0$ and $J/\psi$ in Pb+Pb collisions at $\sqrt{s_\mathrm{NN}}=5.02$ TeV
- Publication Year :
- 2024
-
Abstract
- We study bottom quark energy loss via the nuclear modification factor ($R_\mathrm{AA}$) and elliptic flow ($v_2$) of non-prompt $D^0$ and $J/\psi$ in relativistic heavy-ion collisions at the LHC. The space-time profile of quark-gluon plasma is obtained from the CLVisc hydrodynamics simulation, the dynamical evolution of heavy quarks inside the color deconfined QCD medium is simulated using a linear Boltzmann transport model that combines Yukawa and string potentials of heavy-quark-medium interactions, the hadronization of heavy quarks is performed using a hybrid coalescence-fragmentation model, and the decay of $B$ mesons is simulated via PYTHIA. Using this numerical framework, we calculate the transverse momentum ($p_\mathrm{T}$) dependent $R_\mathrm{AA}$ and $v_2$ of direct $D$ mesons, $B$ mesons, and non-prompt $D^0$ and $J/\psi$ from $B$ meson decay in Pb+Pb collisions at $\sqrt{s_\mathrm{NN}}=5.02$ TeV. We find the mass hierarchy of the nuclear modification of prompt $D$ and $B$ mesons depends on their $p_\mathrm{T}$. Both $R_\mathrm{AA}$ and $v_2$ of heavy flavor particles show strong $p_\mathrm{T}$ and centrality dependences due to the interplay between parton energy loss, medium geometry and flow, and hadronization of heavy quarks. Non-prompt $D^0$ and $J/\psi$ share similar patterns of $R_\mathrm{AA}$ and $v_2$ to $B$ mesons except for a $p_\mathrm{T}$ shift during the decay processes. Therefore, future more precise measurements on non-prompt $D^0$ and $J/\psi$ can help further pin down the bottom quark dynamics inside the quark-gluon plasma.<br />Comment: 11 pages,8 figures
- Subjects :
- High Energy Physics - Phenomenology
Nuclear Experiment
Nuclear Theory
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2404.12601
- Document Type :
- Working Paper