Back to Search Start Over

Defective and Clustered Colouring of Graphs with Given Girth

Authors :
Briański, Marcin
Hickingbotham, Robert
Wood, David R.
Publication Year :
2024

Abstract

The defective chromatic number of a graph class $\mathcal{G}$ is the minimum integer $k$ such that for some integer $d$, every graph in $\mathcal{G}$ is $k$-colourable such that each monochromatic component has maximum degree at most $d$. Similarly, the clustered chromatic number of a graph class $\mathcal{G}$ is the minimum integer $k$ such that for some integer $c$, every graph in $\mathcal{G}$ is $k$-colourable such that each monochromatic component has at most $c$ vertices. This paper determines or establishes bounds on the defective and clustered chromatic numbers of graphs with given girth in minor-closed classes defined by the following parameters: Hadwiger number, treewidth, pathwidth, treedepth, circumference, and feedback vertex number. One striking result is that for any integer $k$, for the class of triangle-free graphs with treewidth $k$, the defective chromatic number, clustered chromatic number and chromatic number are all equal. The same result holds for graphs with treedepth $k$, and generalises for graphs with no $K_p$ subgraph. We also show, via a result of K\"{u}hn and Osthus~[2003], that $K_t$-minor-free graphs with girth $g\geq 5$ are properly $O(t^{c_g})$ colourable, where $c_g\in(0,1)$ with $c_g\to 0$, thus asymptotically improving on Hadwiger's Conjecture.

Subjects

Subjects :
Mathematics - Combinatorics

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2404.14940
Document Type :
Working Paper