Back to Search
Start Over
Deep Learning for Detecting and Early Predicting Chronic Obstructive Pulmonary Disease from Spirogram Time Series
- Publication Year :
- 2024
-
Abstract
- Chronic Obstructive Pulmonary Disease (COPD) is a chronic lung condition characterized by airflow obstruction. Current diagnostic methods primarily rely on identifying prominent features in spirometry (Volume-Flow time series) to detect COPD, but they are not adept at predicting future COPD risk based on subtle data patterns. In this study, we introduce a novel deep learning-based approach, DeepSpiro, aimed at the early prediction of future COPD risk. DeepSpiro consists of four key components: SpiroSmoother for stabilizing the Volume-Flow curve, SpiroEncoder for capturing volume variability-pattern through key patches of varying lengths, SpiroExplainer for integrating heterogeneous data and explaining predictions through volume attention, and SpiroPredictor for predicting the disease risk of undiagnosed high-risk patients based on key patch concavity, with prediction horizons of 1, 2, 3, 4, 5 years, or even longer. Evaluated on the UK Biobank dataset, DeepSpiro achieved an AUC of 0.8328 for COPD detection and demonstrated strong predictive performance for future COPD risk (p-value < 0.001). In summary, DeepSpiro can effectively predicts the long-term progression of the COPD disease.
- Subjects :
- Computer Science - Machine Learning
Computer Science - Artificial Intelligence
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2405.03239
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1038/s41540-025-00489-y