Back to Search
Start Over
Automated Program Repair: Emerging trends pose and expose problems for benchmarks
- Publication Year :
- 2024
-
Abstract
- Machine learning (ML) now pervades the field of Automated Program Repair (APR). Algorithms deploy neural machine translation and large language models (LLMs) to generate software patches, among other tasks. But, there are important differences between these applications of ML and earlier work. Evaluations and comparisons must take care to ensure that results are valid and likely to generalize. A challenge is that the most popular APR evaluation benchmarks were not designed with ML techniques in mind. This is especially true for LLMs, whose large and often poorly-disclosed training datasets may include problems on which they are evaluated.<br />Comment: 16 pages, 1 table, submitted to ACM Computing Surveys
- Subjects :
- Computer Science - Software Engineering
Computer Science - Machine Learning
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2405.05455
- Document Type :
- Working Paper