Back to Search Start Over

Kernel Three Pass Regression Filter

Authors :
Jat, Rajveer
Padha, Daanish
Publication Year :
2024

Abstract

We forecast a single time series using a high-dimensional set of predictors. When these predictors share common underlying dynamics, an approximate latent factor model provides a powerful characterization of their co-movements Bai(2003). These latent factors succinctly summarize the data and can also be used for prediction, alleviating the curse of dimensionality in high-dimensional prediction exercises, see Stock & Watson (2002a). However, forecasting using these latent factors suffers from two potential drawbacks. First, not all pervasive factors among the set of predictors may be relevant, and using all of them can lead to inefficient forecasts. The second shortcoming is the assumption of linear dependence of predictors on the underlying factors. The first issue can be addressed by using some form of supervision, which leads to the omission of irrelevant information. One example is the three-pass regression filter proposed by Kelly & Pruitt (2015). We extend their framework to cases where the form of dependence might be nonlinear by developing a new estimator, which we refer to as the Kernel Three-Pass Regression Filter (K3PRF). This alleviates the aforementioned second shortcoming. The estimator is computationally efficient and performs well empirically. The short-term performance matches or exceeds that of established models, while the long-term performance shows significant improvement.<br />Comment: We have identified some errors and are currently improving them. So we do not want people to read erroneous paper

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2405.07292
Document Type :
Working Paper