Back to Search Start Over

Active Galactic Nuclei and STaR fOrmation in Nearby Galaxies (AGNSTRONG). I. Sample and Strategy

Authors :
Le, Huynh Anh N.
Qin, Chen
Xue, Yongquan
Zhu, Shifu
Nguyen, Kim Ngan N.
Xia, Ruisong
Lin, Xiaozhi
Publication Year :
2024

Abstract

We introduce our project, AGNSTRONG (Active Galactic Nuclei and STaR fOrmation in Nearby Galaxies). Our research goals encompass investigating the kinematic properties of ionized and molecular gas outflows, understanding the impact of AGN feedback, and exploring the coevolution dynamics between AGN strength activity and star formation activity. We aim to conduct a thorough analysis to determine whether there is an increase or suppression in SFRs among targets with and without powerful relativistic jets. Our sample consists of 35 nearby AGNs with and without powerful relativistic jet detections. Utilizing sub-millimeter (sub-mm) continuum observations at 450 {\mu}m and 850 {\mu}m from SCUBA-2 at the James Clerk Maxwell Telescope, we determine star-formation rates (SFRs) for our sources using spectral energy distribution (SED) fitting models. Additionally, we employ high-quality, spatially resolved spectra from UV-optical to near-infrared bands obtained with the Double Spectrograph and Triple Spectrograph mounted on the 200-inch Hale telescope at Palomar Observatory to study their multiphase gas outflow properties. This paper presents an overview of our sample selection methodology, research strategy, and initial results of our project. We find that the SFRs determined without including the sub-mm data in the SED fitting are overestimated by approximately 0.08 dex compared to those estimated with the inclusion of sub-mm data. Additionally, we compare the estimated SFRs in our work with those traced by the 4000{\AA} break, as provided by the MPA-JHU catalog. We find that our determined SFRs are systematically higher than those traced by the 4000{\AA} break. Finally, we outline our future research plans.<br />Comment: 13 pages, accepted for publication in The Astronomical Journal

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2405.09478
Document Type :
Working Paper