Back to Search
Start Over
Open-Vocabulary Spatio-Temporal Action Detection
- Publication Year :
- 2024
-
Abstract
- Spatio-temporal action detection (STAD) is an important fine-grained video understanding task. Current methods require box and label supervision for all action classes in advance. However, in real-world applications, it is very likely to come across new action classes not seen in training because the action category space is large and hard to enumerate. Also, the cost of data annotation and model training for new classes is extremely high for traditional methods, as we need to perform detailed box annotations and re-train the whole network from scratch. In this paper, we propose a new challenging setting by performing open-vocabulary STAD to better mimic the situation of action detection in an open world. Open-vocabulary spatio-temporal action detection (OV-STAD) requires training a model on a limited set of base classes with box and label supervision, which is expected to yield good generalization performance on novel action classes. For OV-STAD, we build two benchmarks based on the existing STAD datasets and propose a simple but effective method based on pretrained video-language models (VLM). To better adapt the holistic VLM for the fine-grained action detection task, we carefully fine-tune it on the localized video region-text pairs. This customized fine-tuning endows the VLM with better motion understanding, thus contributing to a more accurate alignment between video regions and texts. Local region feature and global video feature fusion before alignment is adopted to further improve the action detection performance by providing global context. Our method achieves a promising performance on novel classes.
- Subjects :
- Computer Science - Computer Vision and Pattern Recognition
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2405.10832
- Document Type :
- Working Paper