Back to Search
Start Over
Deterministic fabrication of graphene hexagonal boron nitride moir\'e superlattices
- Publication Year :
- 2024
-
Abstract
- The electronic properties of moir\'e heterostructures depend sensitively on the relative orientation between layers of the stack. For example, near-magic-angle twisted bilayer graphene (TBG) commonly shows superconductivity, yet a TBG sample with one of the graphene layers rotationally aligned to a hexagonal Boron Nitride (hBN) cladding layer provided the first experimental observation of orbital ferromagnetism. To create samples with aligned graphene/hBN, researchers often align edges of exfoliated flakes that appear straight in optical micrographs. However, graphene or hBN can cleave along either zig-zag or armchair lattice directions, introducing a 30 degree ambiguity in the relative orientation of two flakes. By characterizing the crystal lattice orientation of exfoliated flakes prior to stacking using Raman and second-harmonic generation for graphene and hBN, respectively, we unambiguously align monolayer graphene to hBN at a near-0 degree, not 30 degree, relative twist angle. We confirm this alignment by torsional force microscopy (TFM) of the graphene/hBN moir\'e on an open-face stack, and then by cryogenic transport measurements, after full encapsulation with a second, non-aligned hBN layer. This work demonstrates a key step toward systematically exploring the effects of the relative twist angle between dissimilar materials within moir\'e heterostructures.<br />Comment: 40 pages, 15 figures
- Subjects :
- Condensed Matter - Mesoscale and Nanoscale Physics
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2405.18588
- Document Type :
- Working Paper