Back to Search
Start Over
Hierarchical Object-Centric Learning with Capsule Networks
- Publication Year :
- 2024
-
Abstract
- Capsule networks (CapsNets) were introduced to address convolutional neural networks limitations, learning object-centric representations that are more robust, pose-aware, and interpretable. They organize neurons into groups called capsules, where each capsule encodes the instantiation parameters of an object or one of its parts. Moreover, a routing algorithm connects capsules in different layers, thereby capturing hierarchical part-whole relationships in the data. This thesis investigates the intriguing aspects of CapsNets and focuses on three key questions to unlock their full potential. First, we explore the effectiveness of the routing algorithm, particularly in small-sized networks. We propose a novel method that anneals the number of routing iterations during training, enhancing performance in architectures with fewer parameters. Secondly, we investigate methods to extract more effective first-layer capsules, also known as primary capsules. By exploiting pruned backbones, we aim to improve computational efficiency by reducing the number of capsules while achieving high generalization. This approach reduces CapsNets memory requirements and computational effort. Third, we explore part-relationship learning in CapsNets. Through extensive research, we demonstrate that capsules with low entropy can extract more concise and discriminative part-whole relationships compared to traditional capsule networks, even with reasonable network sizes. Lastly, we showcase how CapsNets can be utilized in real-world applications, including autonomous localization of unmanned aerial vehicles, quaternion-based rotations prediction in synthetic datasets, and lung nodule segmentation in biomedical imaging. The findings presented in this thesis contribute to a deeper understanding of CapsNets and highlight their potential to address complex computer vision challenges.<br />Comment: Updated version of my PhD thesis (Nov 2023), with fixed typos. Will keep updated as new typos are discovered!
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2405.19861
- Document Type :
- Working Paper