Back to Search Start Over

Benchmarking AlphaFold3's protein-protein complex accuracy and machine learning prediction reliability for binding free energy changes upon mutation

Authors :
Wee, JunJie
Wei, Guo-Wei
Publication Year :
2024

Abstract

AlphaFold 3 (AF3), the latest version of protein structure prediction software, goes beyond its predecessors by predicting protein-protein complexes. It could revolutionize drug discovery and protein engineering, marking a major step towards comprehensive, automated protein structure prediction. However, independent validation of AF3's predictions is necessary. Evaluated using the SKEMPI 2.0 database which involves 317 protein-protein complexes and 8338 mutations, AF3 complex structures give rise to a very good Pearson correlation coefficient of 0.86 for predicting protein-protein binding free energy changes upon mutation, slightly less than the 0.88 achieved earlier with the Protein Data Bank (PDB) structures. Nonetheless, AF3 complex structures led to a 8.6% increase in the prediction RMSE compared to original PDB complex structures. Additionally, some of AF3's complex structures have large errors, which were not captured in its ipTM performance metric. Finally, it is found that AF3's complex structures are not reliable for intrinsically flexible regions or domains.

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2406.03979
Document Type :
Working Paper