Back to Search
Start Over
Free-space quantum information platform on a chip
- Publication Year :
- 2024
-
Abstract
- Emerging technologies that employ quantum physics offer fundamental enhancements in information processing tasks, including sensing, communications, and computing. Here, we introduce the quantum phased array, which generalizes the operating principles of phased arrays and wavefront engineering to quantum fields, and report the first quantum phased array technology demonstration. An integrated photonic-electronic system is used to manipulate free-space quantum information to establish reconfigurable wireless quantum links in a standalone, compact form factor. Such a robust, scalable, and integrated quantum platform can enable broad deployment of quantum technologies with high connectivity, potentially expanding their use cases to real-world applications. We report the first, to our knowledge, free-space-to-chip interface for quantum links, enabled by 32 metamaterial antennas with more than 500,000 sub-wavelength engineered nanophotonic elements over a 550 x 550 $\mathrm{\mu m}^2$ physical aperture. We implement a 32-channel array of quantum coherent receivers with 30.3 dB shot noise clearance and 90.2 dB common-mode rejection ratio that downconverts the quantum optical information via homodyne detection and processes it coherently in the radio-frequency domain. With our platform, we demonstrate 32-pixel imaging of squeezed light for quantum sensing, reconfigurable free-space links for quantum communications, and proof-of-concept entanglement generation for measurement-based quantum computing. This approach offers targeted, real-time, dynamically-adjustable free-space capabilities to integrated quantum systems that can enable wireless quantum technologies.
- Subjects :
- Quantum Physics
Physics - Applied Physics
Physics - Optics
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2406.09158
- Document Type :
- Working Paper