Back to Search Start Over

Alleviating Distortion in Image Generation via Multi-Resolution Diffusion Models

Authors :
Liu, Qihao
Zeng, Zhanpeng
He, Ju
Yu, Qihang
Shen, Xiaohui
Chen, Liang-Chieh
Publication Year :
2024

Abstract

This paper presents innovative enhancements to diffusion models by integrating a novel multi-resolution network and time-dependent layer normalization. Diffusion models have gained prominence for their effectiveness in high-fidelity image generation. While conventional approaches rely on convolutional U-Net architectures, recent Transformer-based designs have demonstrated superior performance and scalability. However, Transformer architectures, which tokenize input data (via "patchification"), face a trade-off between visual fidelity and computational complexity due to the quadratic nature of self-attention operations concerning token length. While larger patch sizes enable attention computation efficiency, they struggle to capture fine-grained visual details, leading to image distortions. To address this challenge, we propose augmenting the Diffusion model with the Multi-Resolution network (DiMR), a framework that refines features across multiple resolutions, progressively enhancing detail from low to high resolution. Additionally, we introduce Time-Dependent Layer Normalization (TD-LN), a parameter-efficient approach that incorporates time-dependent parameters into layer normalization to inject time information and achieve superior performance. Our method's efficacy is demonstrated on the class-conditional ImageNet generation benchmark, where DiMR-XL variants outperform prior diffusion models, setting new state-of-the-art FID scores of 1.70 on ImageNet 256 x 256 and 2.89 on ImageNet 512 x 512. Project page: https://qihao067.github.io/projects/DiMR<br />Comment: Introducing DiMR, a new diffusion backbone that surpasses all existing image generation models of various sizes on ImageNet 256 with only 505M parameters. Project page: https://qihao067.github.io/projects/DiMR

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2406.09416
Document Type :
Working Paper