Back to Search Start Over

An approach to non-equilibrium statistical physics using variational Bayesian inference

Authors :
Ramstead, Maxwell J D
Sakthivadivel, Dalton A R
Friston, Karl J
Publication Year :
2024

Abstract

We discuss an approach to mathematically modelling systems made of objects that are coupled together, using generative models of the dependence relationships between states (or trajectories) of the things comprising such systems. This broad class includes open or non-equilibrium systems and is especially relevant to self-organising systems. The ensuing variational free energy principle (FEP) has certain advantages over using random dynamical systems explicitly, notably, by being more tractable and offering a parsimonious explanation of why the joint system evolves in the way that it does, based on the properties of the coupling between system components. Using the FEP allows us to model the dynamics of an object as if it were a process of variational inference, because variational free energy (or surprisal) is a Lyapunov function for its dynamics. In short, we argue that using generative models to represent and track relations among subsystems leads us to a particular statistical theory of interacting systems. Conversely, this theory enables us to construct nested models that respect the known relations among subsystems. We point out that the fact that a physical object conforms to the FEP does not necessarily imply that this object performs inference in the literal sense; rather, it is a useful explanatory fiction which replaces the 'explicit' dynamics of the object with an 'implicit' flow on free energy gradients - a fiction that may or may not be entertained by the object itself.<br />Comment: 25+2 pages

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2406.11630
Document Type :
Working Paper