Back to Search Start Over

QuadrupedGPT: Towards a Versatile Quadruped Agent in Open-ended Worlds

Authors :
Wang, Ye
Mei, Yuting
Zheng, Sipeng
Jin, Qin
Publication Year :
2024

Abstract

While pets offer companionship, their limited intelligence restricts advanced reasoning and autonomous interaction with humans. Considering this, we propose QuadrupedGPT, a versatile agent designed to master a broad range of complex tasks with agility comparable to that of a pet. To achieve this goal, the primary challenges include: i) effectively leveraging multimodal observations for decision-making; ii) mastering agile control of locomotion and path planning; iii) developing advanced cognition to execute long-term objectives. QuadrupedGPT processes human command and environmental contexts using a large multimodal model (LMM). Empowered by its extensive knowledge base, our agent autonomously assigns appropriate parameters for adaptive locomotion policies and guides the agent in planning a safe but efficient path towards the goal, utilizing semantic-aware terrain analysis. Moreover, QuadrupedGPT is equipped with problem-solving capabilities that enable it to decompose long-term goals into a sequence of executable subgoals through high-level reasoning. Extensive experiments across various benchmarks confirm that QuadrupedGPT can adeptly handle multiple tasks with intricate instructions, demonstrating a significant step towards the versatile quadruped agents in open-ended worlds. Our website and codes can be found at https://quadruped-hub.github.io/Quadruped-GPT/.<br />Comment: Under review

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2406.16578
Document Type :
Working Paper