Back to Search Start Over

DeepExtremeCubes: Integrating Earth system spatio-temporal data for impact assessment of climate extremes

Authors :
Ji, Chaonan
Fincke, Tonio
Benson, Vitus
Camps-Valls, Gustau
Fernandez-Torres, Miguel-Angel
Gans, Fabian
Kraemer, Guido
Martinuzzi, Francesco
Montero, David
Mora, Karin
Pellicer-Valero, Oscar J.
Robin, Claire
Soechting, Maximilian
Weynants, Melanie
Mahecha, Miguel D.
Publication Year :
2024

Abstract

With climate extremes' rising frequency and intensity, robust analytical tools are crucial to predict their impacts on terrestrial ecosystems. Machine learning techniques show promise but require well-structured, high-quality, and curated analysis-ready datasets. Earth observation datasets comprehensively monitor ecosystem dynamics and responses to climatic extremes, yet the data complexity can challenge the effectiveness of machine learning models. Despite recent progress in deep learning to ecosystem monitoring, there is a need for datasets specifically designed to analyse compound heatwave and drought extreme impact. Here, we introduce the DeepExtremeCubes database, tailored to map around these extremes, focusing on persistent natural vegetation. It comprises over 40,000 spatially sampled small data cubes (i.e. minicubes) globally, with a spatial coverage of 2.5 by 2.5 km. Each minicube includes (i) Sentinel-2 L2A images, (ii) ERA5-Land variables and generated extreme event cube covering 2016 to 2022, and (iii) ancillary land cover and topography maps. The paper aims to (1) streamline data accessibility, structuring, pre-processing, and enhance scientific reproducibility, and (2) facilitate biosphere dynamics forecasting in response to compound extremes.

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2406.18179
Document Type :
Working Paper