Back to Search Start Over

Boiling stratified flow: a laboratory analogy for atmospheric moist convection

Authors :
Fu, Hao
Cenedese, Claudia
Lefauve, Adrien
Vallis, Geoffrey K.
Publication Year :
2024

Abstract

We present a novel laboratory experiment, boiling stratified flow, as an analogy for atmospheric moist convection. A layer of diluted syrup is placed below freshwater in a beaker and heated from below. The vertical temperature profile in the experiment is analogous to the vapor mixing ratio in the atmosphere while the vertical profile of freshwater concentration in the experiment is analogous to the potential temperature profile in the atmosphere. Boiling starts when the bottom of the syrup layer reaches the boiling point, producing bubbles and vortex rings that stir the two-layer density interface and bring colder fresh water into the syrup layer. When the syrup layer at the beginning of the experiment is sufficiently thin and diluted, the vortex rings entrain more cold water than needed to remove superheating in the syrup layer, ending the boiling. When the syrup layer is deep and concentrated, the boiling is steady since the entrained colder water instantaneously removes the superheating in the bottom syrup layer. A theory is derived to predict the entrainment rate and the transition between the intermittent and steady boiling regimes, validated by experimental data. We suggest that these dynamics may share similarities with the mixing and lifecycle of cumulus convection.

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2407.00555
Document Type :
Working Paper