Back to Search
Start Over
NOEMA formIng Cluster survEy (NICE): Characterizing eight massive galaxy groups at $1.5 < z < 4$ in the COSMOS field
- Source :
- A&A 690, A55 (2024)
- Publication Year :
- 2024
-
Abstract
- The NOEMA formIng Cluster survEy (NICE) is a large program targeting 69 massive galaxy group candidates at $z>2$ in six deep fields. We report spectroscopic confirmation of eight groups at $1.65\leq z\leq3.61$ in COSMOS. Homogeneously selected as significant overdensities of red IRAC sources with red Herschel colors, four groups are confirmed by CO and [CI] with NOEMA 3mm observations, three are confirmed with ALMA, and one is confirmed by H$\alpha$ from Subaru/FMOS. We constructed the integrated FIR SEDs for the eight groups, obtaining total IR SFR $=260-1300~{\rm M_\odot}$~yr$^{-1}$. We adopted six methods to estimate the dark matter masses, including stellar mass to halo mass relations, overdensity with galaxy bias, and NFW profile fitting to radial stellar mass density. We found the radial stellar mass density are consistent with a NFW profile, supporting that they are collapsed structures hosted by a single dark matter halo. The best halo mass estimates are $\log(M_{\rm h}/{\rm M_\odot})=12.8-13.7$ with uncertainty of 0.3 dex. From halo mass estimates, we derive baryonic accretion rate ${\rm BAR}=(1-8)\times10^{3}\,{\rm M_{\odot}/yr}$ for this sample. We find a quasi-linear correlation between the integrated SFR/BAR and the theoretical halo mass limit for cold streams, $M_{\rm stream}/M_{\rm h}$, with ${\rm SFR/BAR}=10^{-0.46\pm0.22}\left({M_{\rm stream}/M_{\rm h}}\right)^{0.71\pm0.16}$ with a scatter of $0.40\,{\rm dex}$. Further, we compare halo masses and stellar masses with simulations, and find all structures are consistent with being progenitors of $M_{\rm h}(z=0)>10^{14}\,{\rm M_{\odot}}$ galaxy clusters, and the most massive central galaxies have stellar masses consistent with brightest cluster galaxies (BCGs) progenitors in the TNG300 simulation. The results strongly suggest these structures are forming massive galaxy clusters via baryonic and dark matter accretion.<br />Comment: 44 pages (27pp appendix), 32 figures, 18 tables, accepted for publication in A&A
- Subjects :
- Astrophysics - Astrophysics of Galaxies
Subjects
Details
- Database :
- arXiv
- Journal :
- A&A 690, A55 (2024)
- Publication Type :
- Report
- Accession number :
- edsarx.2407.02973
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1051/0004-6361/202450760