Back to Search
Start Over
Improve Load Forecasting in Energy Communities through Transfer Learning using Open-Access Synthetic Profiles
- Publication Year :
- 2024
-
Abstract
- According to a conservative estimate, a 1% reduction in forecast error for a 10 GW energy utility can save up to $ 1.6 million annually. In our context, achieving precise forecasts of future power consumption is crucial for operating flexible energy assets using model predictive control approaches. Specifically, this work focuses on the load profile forecast of a first-year energy community with the common practical challenge of limited historical data availability. We propose to pre-train the load prediction models with open-access synthetic load profiles using transfer learning techniques to tackle this challenge. Results show that this approach improves both, the training stability and prediction error. In a test case with 74 households, the prediction mean squared error (MSE) decreased from 0.34 to 0.13, showing transfer learning based on synthetic load profiles to be a viable approach to compensate for a lack of historic data.<br />Comment: The paper has been accepted for the IEEE RTSI 2024 conference
- Subjects :
- Computer Science - Machine Learning
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2407.08434
- Document Type :
- Working Paper