Back to Search
Start Over
Inferring dark energy properties from the scale factor parametrisation
- Publication Year :
- 2024
-
Abstract
- We propose and implement a novel test to assess deviations from well-established concordance $\Lambda$CDM cosmology while inferring dark energy properties. In contrast to the commonly implemented parametric forms of the dark energy equation-of-state (EoS), we test the validity of the cosmological constant on the more fundamental scale factor [$a(t)$] which determines the expansion rate of the Universe. We constrain our extended `general model' for the expansion history using the late-time cosmological observables, namely Baryon Acoustic Oscillations (BAO) and Supernovae. As a primary inference, we contrast the BAO compilations from the completed SDSS and the more recent DESI. We find that the former deviates from the $\Lambda$CDM scenario at a mild $\sim 2\sigma$ level while the latter is completely consistent with the standard picture when the dark energy properties are inferred. We find that the posterior of the dark energy EoS is mainly constrained to be quintessence-like, however, we demonstrate the rich phenomenology of dark energy behaviour that can be obtained in our general model wrt to the $\Lambda$CDM.<br />Comment: 10 pages, 4 figures, 2 tables, comments are welcome
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2407.10845
- Document Type :
- Working Paper