Back to Search Start Over

Error analysis of a pressure correction method with explicit time stepping

Authors :
Kaya, Utku
Richter, Thomas
Publication Year :
2024

Abstract

The pressure-correction method is a well established approach for simulating unsteady, incompressible fluids. It is well-known that implicit discretization of the time derivative in the momentum equation e.g. using a backward differentiation formula with explicit handling of the nonlinear term results in a conditionally stable method. In certain scenarios, employing explicit time integration in the momentum equation can be advantageous, as it avoids the need to solve for a system matrix involving each differential operator. Additionally, we will demonstrate that the fully discrete method can be expressed in the form of simple matrix-vector multiplications allowing for efficient implementation on modern and highly parallel acceleration hardware. Despite being a common practice in various commercial codes, there is currently no available literature on error analysis for this scenario. In this work, we conduct a theoretical analysis of both implicit and two explicit variants of the pressure-correction method in a fully discrete setting. We demonstrate to which extend the presented implicit and explicit methods exhibit conditional stability. Furthermore, we establish a Courant-Friedrichs-Lewy (CFL) type condition for the explicit scheme and show that the explicit variant demonstrate the same asymptotic behavior as the implicit variant when the CFL condition is satisfied.

Subjects

Subjects :
Mathematics - Numerical Analysis

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2407.11159
Document Type :
Working Paper